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One-dimensional &potential in external fields 
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Abstract. The ID S-potential with strength Q in an extemal in-plane magnetic field B is 
considered theoretically. Energy dependences on Q and d (with d being normalized to the 
magnetic radial m = @/cB)'/' distance behueen the &potential and the yeitex of the magnetic 
panbola) are calculated and analysed in detail in the whole rages of d and st. It is shown that 
at d = djx the jth Landau level is not affected by the presence of the potential. where djr are the 
zems of the jthdegree Hermite polynomial. Ford  = 0. every excited even level with nunkm 
j changes its energy n o d i z e d  to h w  (m is the cyclotron frequency) from j - 4 at R = -m 
through j t at R = 0 to j + ;(Q = tm). However, the groundstate energy asymptotically 
tends to -m while Q varies from +m to -m. A simple physical explanation of the results 
obtained is given. Anticrossings of the levels in the dispersion relations are investigated for all 
values of f2. For fixed positive (negative) R, every jth level ( j  = 0, I . .  . .) has, on the d axis, 
j minima (maim)  with absolute value j t 4, which are achieved at djx. It is derived that, 
in the anticrossing picture, gaps between levels at the points djk decrease on increase in IQl, 
and levels cross at Q = fm. For large negative P a picture of the interaction of the ground 
state with excited levels is given. The proposed model with the simplest modification is used 
to investigate the combined influence of the crossed electric and magnetic fields. This problem 
enables comparison with earlier results for a S-like quantum object in a uniform electric field. 

A problem of increasing interest is the influence of an external magnetic field B on the 
electronic, transport and optical properties of semiconductors [ 11. In previous investigations 
(see, e.g., [1-12], and references therein), nanoshuctures were modelled by means of a 
quantum well (or sequence of wells) with a finite width and a finite or infinite height of 
the barrier or barriers. To the great surprise of the present author, no complete solution of 
the similar problem for a one-dimensional (ID) S-potential has been found in the literature. 
The main goal of the present paper is to achieve this. This extremely simplified model 
allows one to obtain physically clear conclusions for both a 6 barrier and a 6 well and, in a 
sense, is a generalization of previous studies. Another advantage lies in the fact that with 
the simplest modification it can be applied to the combined influence of the crossed electric 
and magnetic fields which in the case of the vanishing magnetic field enables comparison 
with earlier results for a quantum well or barrier in a uniform electric field. 

In the absence of external fields, the behaviour of a particle in a ID potential of the 
form V(y) = @/m)SU(y - y p )  (m is the mass of the particle and y p  is the location of 
the potential on the y axis) is well known [13,14]. For R > 0 there are no bound states, 
and the reflection and transmission coefficients are easily calculated [13,14]. For s2 c 0 
there is one bound state with energy - h z 6 / 2 m  [13,14]. Now let us apply a magnetic 
field B = (0,O. B ) ,  which lies in the plane of the potential. The opposite configuration 

t Present address: Department of Physics, Chonnam National University, Kwangju. 500-757, Republic of Korea 

0953-8984/95/265067t08$1950 @ 1995 IOP Publishing Ltd 5067 



5068 0 Olendski 

with the field perpendicular to the plane is trivial and will not be discussed here. As usual 
in the Landau gauge, we use a vector potential of the form A = (-By, 0,O). In that case 
the variables x and z with the help of plane waves are factorized out, and the y-dependent 
part of the Schrodmger equation describes particle behaviour on the superposition of two 
potentials: the Mike profile and the usual magnetic parabola. The corresponding solutions 
for the wavefunction are 

X(Y) = A-U(v, -HY)) Y < YP (14 
X(Y) = A+wJ.F(Y)) Y ’ YP (Ib)  

with 

v = -c (24 
f(Y) = 2’TY - yo)/rs (2b) 

(3) c = ( E  - p ; / h ) / h o s .  

Here OB = e B / m ,  r s  = (h/eB)’/’ ,  yo = -pJeB,  pr and p z  are the x and z components 
of the kinetic momentump and U ( v ,  f) is the Weber parabolic cylinder function [15,16]. In 
deriving (l), use has been made of the properties of the Weber functions, i.e. solutions which 
increase with y --t kc0 and which contain the functions V(u ,  f) have been omitted. The 
usual procedure of matching the wavefunctions in the presence of the &potential [13.14] 
gives a universal equation for the determination of the energy spectrum (the prime on 
U(u ,  f )  denotes the derivative of the Weber function with respect to the second argument): 

U ( V ,  2*/’d)U‘(~, -2’”d) + U’(U, 2’/’d)U(U, -2’l’d) - Q B U ( U ,  2’”d)U(v, -2’”d) = 0 
(4) 

= 2 ’ / ’ r B ~  (5) 

d = A  (6) 

with A being normalized to the magnetic radial distance between the potential and the centre 
of the magnetic oscillations: 

A = CVP - W r s .  (7) 

We wish to note that, contrary to the uniform magnetic field, unperturbed by potentials, 
when Hamiltonian eigenvalues are independent of p x ,  in our case the energy strongly 
depends on the x component of kinetic momentum which, in turn, determines the vertex of 
the parabola. This is clearly seen from equation (4) which link together the energy E ,  the 
field B,  the opacity 62 and the kinetic momentum p r .  It is worthwhile to point out also that 
(4) is invariant with respect to the change in sign of d .  Therefore, below (figures 2 and 3), 
only the case d > 0 is considered. 

For d = 0, (4) can be simplified to 

U(U,O)I2U’(V,O)- Q ~ u ( v , o ) ] = o  
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or, using the properties of the parabolic cylinder functions [16], one immediately finds that 
odd h d a u  levels are not affected by the presence of the d-potential at the vertex of the 
parabola, i.e. 

and even states satisfy the equation (see also [17,181 where a similar expression has been 
derived using other methods) 

Equation (Sa) is a particular case of the well known result that a quantum system does 
not ‘feel‘ the external S-potential if the S-potential is located at one of the nodes of the 
wavefunction [13,17,18]. Some preliminary results may be derived for the limiting cases 
RB = 0 and !& -+ f o o  without numerical solutions of (4) and (Sb). For instance, 
for QB = 0, one gets, as expected, the spectrum of the usuaI Landau levels. The case 
RB + +CO corresponds physically to magnetic fields small compared with the opacity 
of the quantum barrier. In this case we have a system of two non-interacting constrained 
quantum-mechanical harmonic oscillators [I91 with a common impenetrable boundary. At 
OB + +m and d = 0 we can conclude, using the properties of the r-function (figure 6.1 
in [16]), that the energy of every even Landau state tends to the “est odd level above. 
For Q B  --t --CO, every even state (except the ground state) approaches the energy of the 
corresponding odd level from the direction of the higher energies. However, in this case 
the ground-state solution of (Sb) on increase in l R ~ l  tends asymptotically to the value 

co(d = 0;  Q B  -+ -w) = -inz 1 B  

which appears to be the ground-state energy (in units of h w ~ )  in the absence of an external 
field. This last result may be easily explained from the physical point of view also, namely 
that small magnetic fields produce little effect on the quantum well. 

In figure 1 the c dependence on Q S  is shown for d = 0, i.e. for the case when the 
singular potential coincides with the vertex of the magnetic parabola. As we discussed 
earlier. every even state with number j (except j = 0) changes its energy from j - f 
at RB = -CO through j + 4 at RB = 0 to j + 1 at Q B  = +oo. Similar to the previous 
configurations [4,9], for higher-lying even states, transformations to odd-state energies occur 
at higher I Q B ~ .  

In figures 2 and 3 the energy dependences on d for a few positive and negative Q8- 
values, respectively, are shown. For positive (negative) R,, every jth level 0’ = 0.1.2,. . .) 
has, on the d axis (--00 < d < foe), j minima (maxima) with absolute value j+  i, which 
are achieved at djk, with djk being the kth zero of the jth-degree Hermite polynomial: 

The djk values may be found, for example, in table 25.10 in [16]. Equations (9) are due to 
the above-mentioned fact that the d-potential cannot affect properties of the quantum states 
if it is located in one of the nodes of the corresponding wavefunction [2, 13,191. 
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Figwe 1. Dependence of the nordlized energy c on Ss af d = 0 (compare with figure 8 of 
[IS]). The numbers near fhe curves denotes the levels: 0, ground state; 1-6, excited levels. 

The characteristic features of similar systems which have been widely discussed earlier 
[1,2,5,6,8,10-12] are anticrossings of the levels in dispersion relations. The model of the 
&potential in an external field proposed here allows one to elucidate this propem for the 
barrier (a, > 0) and the well (QB < 0). That is, as is seen from figures 2(u) and 3@), at 
small [ Q B ~  there are small deviations in the energies from the Landau states on varying d 
which, in turn, linearly depends on the kinetic momentum p x .  It is even difficult in this case 
to consider any interaction between levels. However, on increase in l D ~ l  (figures 2(b), 2(c) 
and 3(b)-3(d)) the levels become closer and closer to each other at the points djk. With 
increasing l Q ~ l  the gaps between states decrease but remain finite and not equal to zero. 
The gaps are wider for higher states, and only at lsZ~l = f03 do levels cross at the points 
djr (figure 2(d)).  It should be mentioned also that, as expected, at large d the levels are the 
usual Landau states. At fixed QB for higher states, this OCCUIS at larger d .  The same is also 
true for fixed j and varying 10~1. The explanation for this is similar to that in previous 
studies [2,4,9,19]. 
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Figure 2. Dispersion relations for (a) 516 = I ,  (b)  QB = 5. (c) QB = IO and (d )  Q, = m. 
The case QB = m may be obtained as a replica of a plot for a constrained quantum mechanical 
harmonic oscillator folded along the energy axis (figure 2 in [19]). 

Another interesting phenomenon consists of the repulsions of the levels at S ~ B  < 0. 
Similar to the abovediscussed anticrossings, this phenomenon is clearly manifested at large 
IS2sl when, as mentioned above, the ground state has a large negative energy. In this case 
on increase in d the first excited state approaches and attains the energy CO = 4, the second 
excited state CI = ;, etc. On the other hand, increasing d causes the ground-state energy to 
increase also, and finally it is shifted from the negative part of the spectrum and approaches 
the value CO = i, causing the first excited level to move upwards because of repulsion; it 
maintains this energy on further increase in the distance. In turn, the level which is moved 
upwards attains the value CI = ;, and the whole picture is repeated, etc. For larger lGB[ 
(Le. for deeper wells) the repulsions just described occur at larger d, the slope of the curve 
being steeper and the transformations sharper. Using the properties of the Weber functions 
[15,16], one can easily show from equation (4) that at large l Q ~ l  the location of these 
anticrossings on the d axis linearly depends on 1Q~l. All other properties are similar to the 
anticrossings discussed earlier in this paper. In our model this is completely analogous to 
the behaviour of magnetic levels near the potential step [ 1.51 or in the finite superlattice 
[I, 111. 

Finally we should point out that, as at 0, = -CO infinite energy is available while 
achieving the ground state, the dispersion relation for !&I = -CO is the same as for 
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Figure 3. Dispersion relations for (a) Qg = -1, (b) h2s = -5, ( e )  Rg = -10 and (d )  
Rs = -50. Bemuse of the chosen scale, the pps behueen lhe states for the ground.state 
interaction with exited levels are not resolved in (bHd) .  

a, = +ca. This is seen also directly from equation (4). which for the case as = fw is 

V(u, 2 1 / 2 d ) U ( ~ ,  -2”*d) = 0. 

The only difference is that the odd and even states have changed places. 
It is insmctive to compare the results presented here with the predictions of classical 

electrodynamics. This states that a charged particle does not ‘feel’ a barrier (to be specific, 
in the classical limit we shall talk about a barrier) if d > 1. In this case one has the usual 
cyclotron orbit in a uniform magnetic field, without average displacement along the x or 
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y axes [20]. Wis is in a some accordance with quantum theory where also for large d 
the influence of the potential on magnetic states is negligible. If the orbit hits the barrier 
(d c I), which in classical theory is impenetrable for all values z 0, the particle begins to 
move along a skipping orbit, acquiring an average velocity along the barrier, perpendicular 
to the magnetic field. It can be readily shown that this velocity has only an x component 
and its value is 

with U! being the transverse velocity of the classical particle in the unperturbed uniform 
magnetic field. a satisfies the equation 

cosa = d 

and for d the classical definition of the magnetic radius is used 

For two limiting cases of d we have the following: for case (i), d = 0, (ux) = ( 2 / x ) u f ,  
the largest value; for case (ii). d = 1, ( u x )  = 0, as expected. It is also seen from (10) that 
(ur) is larger for higher energies. Again, this is in agreement with the results of the wave 
mechanics presented above. 

There is no difficulty in extending the quantum model proposed here to the case of the 
simultaneous influence of the crossed magnetic field B and electric field F ,  the latter being 
directed along the y axis. In this case the wavefunction is expressed by equation (1) also 
with 

q = eFrBflwB 

YOB = Y O /  rB. 

Equation (4) also holds with 

d = A - V .  (13) 

Therefore, we see that all the conclusions derived above will be valid in the case of crossed 
fields with the corresponding choice of U and d according to (l lt(13).  At this point we 
note the quadratic dependence of normalized energies c on F in two limiting cases: case I, 
q -+ 0 (the electric field is small compared with the magnetic field); case D[, 0 + +CO 

(the magnetic field is small in comparison with the electric field). Both cases may be easily 
explained physically. For case JJ we obtain superposition of the crossed fields [14] with 
the &potential as a small perturbation. The larger 7, the smaller is the perturbation. Case I 
with the auxiliary condition A = 0 (and a, c 0) corresponds to the problem of the 8 well 
in a small  uniform electric field when the energy also quadratically depends on F [14]. 
However, our approach has some advantages, since we do not have to use Airy functions 
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with complex arguments, as has been done in 1141 for the 6 well and in [21,22] for a 
finite quantum potential. This can be explained by the fact that, in our method, because 
of the presence of the magnetic field we have true bound s t a b  and, in [14,21,22], only a 
quasi-bound state exists. 

Finally, we indicate some obvious extensions of the present work. Firstly, on increasing 
the number of the barriers or the wells, we come to the Kronig-Penney 6 model of the solid 
state in external fields (a similar procedure for finite wells and barriers has been discussed 
in [l,  111). Secondly, comparing the results presented here with those in 19,211, we can 
calculate the electronic and optical properties of the finite quantum well in crossed electric 
and magnetic fields, which enables a comparison to be made with different methods of 
investigating the quantum well in the uniform electric field [21,23-28]. Detailed discussions 
of these investigations will be reported elsewhere. 
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